
CprE 492 Bi-Weekly Report 02

2/7/2021 - 2/21/2021

Group #: 50

Project Title: Cy-Sec Game

Advisor: Manimaran Govindarasu

Front End Members: Jon Greazel, Hayden Sellars, Joseph Strobel

Back End Members: Harrison Majerus, Nicholas Battani, Stefan Peng

Bi-Weekly Summary: During the last two weeks we have made steady progress
toward a completed project. We are on schedule and very close to completing the
attack tree analysis engine. The backend API connection is nearly complete, our
analysis engine is done and needs testing, and our front end is taking shape and able
to send pertinent information to the backend.

Past 2 Weeks Accomplishments:

● Jon:
○ Node palette & retaining shapes: This involved gaining a deeper

understanding of go.js and how it declares its palette constants.
Eventually I was able to create the custom shapes we needed and assign
them to the correct nodes

○ API handler: Created a post method to give the b/e our node data and
edge data. They will run this through their algorithm and return the
correct risk probabilities

○ Styling: this was mostly CSS to give our app a more consistent
formatting and color scheme

● Hayden:
○ Fixed the diagram to be in Graph Link Format
○ Restructured inspector component
○ Basic HTML and CSS formatting to make frontend more interesting and

attractive
○ Importing Angular Material components into front-end
○ Added Node attributes for Probability and Text
○ Removed Root Node

● Joe:

○ Recreate project for tree format: Initially we decided to change layouts in
the GoJS library. After some research and testing this change, the
frontend team decided to revert back to the graph layout, so I made the
change back and reorganized the project from experiments to our
finalized file structure under the frontend folder.

○ Saving graph data: The graph can now be saved to a .json file for the user
to upload later. This json object contains a list of the nodes and a list of
the links in their graph.

○ Loading graph data: The user can upload their saved graph to the
application to be used again and reanalyzed.

● Harry:
○ Iterated on attack tree algorithm pseudocode.
○ Created working prototype algorithm to run hard-coded example JSON

with processing helper functions and scenario class
● Nick:

○ Set up the backend API and database.
○ Connected backend with frontend using RESTful API.

● Stefan:
○ Attack tree algorithm: Created initial pseudocode attack tree algorithm.

Worked on a prototype algorithm and started to integrate it with the API
to allow processing data from the frontend.

Pending Issues:

Individual Contributions:

Team Member Contribution Weekly Hours Total Hours

Jon Greazel Created node palette, fixed issue
where shapes changed on graph
entry, API handler for f/e, f/e styling

6 / 7 13

Hayden Sellars 6/6 12

Joe Strobel Experimented with tree layout and
finalized layout decision; saving
graph data; loading graph data

6 / 7 13

Harry Majerus Attack tree algorithm and data
processing functions

6/7 13

Plans for the Upcoming 2 Weeks:

● Jon:
○ Create a new node for the safe path and update our inspector. The new

inspector will assign an additional value, impact, and these values will
need to be removed from and/or nodes since they shouldn't have any
value.

● Hayden:
○ Create new Inspector components for the different nodes because they

require different values.
○ Use Materials.io to implement some visualization on front end for

analyzing
● Joe:

○ Begin data validation ticket - this entails checking that the sent to the
backend includes proper values for probability, impact and that there is
only one safe path. I’ll also continue research into updating the graph
diagram.

● Harry:
○ Additions to attack tree algorithm including factoring in impact of

attacks into algorithm output, a function for normalization of
probabilities assigned to attacks, and modifications for new
consideration of a ‘safe path’ in user tree (probability of no attack).
Understand attack-defense tree processing from an algorithm
perspective.

● Nick:
○ Hook up API to algorithm libraries, assist in research of new algorithms.

● Stefan:
○ Start research and prototyping on the attack-defense tree algorithm.

This will require adding the ability to process defense nodes as well as
computing the Nash equilibria for the possible payoff functions.

Summary of Weekly Advisor Meetings: During our meetings with Manimaran we
spent time demonstrating the work we’d done the previous week. He is pleased with
our progress so far and is excited to see the back end and front end connected during

Nicholas Battani Set up backend API/Database,
connected frontend and backend
using RESTful API.

6/6 12

Stefan Peng Attack tree algorithm: research,
design, implementation

6/6 12

our next meeting. We’ve also come to the conclusion that our backend won’t be
powered by 3 engines, but just 2 now. We plan to combine attack-defense trees with
game theory. Burhan also gave a presentation on potential implementations of this
during our last meeting.

