
CprE 492 Bi-Weekly Report 01

2/28/2021 - 3/14/2021

Group #: 50

Project Title: Cy-Sec Game

Advisor: Manimaran Govindarasu

Front End Members: Jon Greazel, Hayden Sellars, Joseph Strobel

Back End Members: Harrison Majerus, Nicholas Battani, Stefan Peng

Bi-Weekly Summary: For the past weeks our team has been focusing on nailing down
details for each computation engine. We’ve spent a lot of time with our advisor
deciding which inputs and attributes best suit each version of the application. Our
back end team is moving forward with all three analytical algorithms while the front
end is working to implement the correct inputs per engine.

Past 2 Weeks Accomplishments:
● Jon:

○ Worked more on the inspector: Some of our inputs were incorrect so I
changed the values on the inspector. Our root node also needed its own
value, so I created a node on the palette for the root.

○ Worked on engine selector: The user will be able to select which engine
they want to use, so I made a select input that will eventually set a global
variable and modify the palette and inspectors accordingly.

■
● Hayden:

○ Added animation triggers onto the nodes for front end visualization that
highlights vulnerable defense nodes (right now random)



● Joe:
○ Added the defense node with associated inputs for the backend. Added

the inspector for clicking on the defense node. Discussed best practice
for the engine selector.

■
● Harry:

○ Changes to attack-tree algorithm based on new specifications. Changed
algorithm output for easier frontend processing. Started attack-defense
algorithm implementation and researched ways to go about processing
all possible paths for maximum investment efficiency.

● Nick:
○ Added functionality for engines to be access by front-end via the API.

Helped integrate the engine functionality to the API.
● Stefan:

○ Started work on the game theory engine. Using the computed attack and
defense scenarios, the payoff for the attacker for each combination of
scenarios is calculated as , where is the cost of the𝑈

𝐴
= 𝐶

𝐷
+ 𝐼 − 𝐶

𝐴
𝐶
𝐷

defense scenario, is the impact of the breach, and is the cost of the𝐼 𝐶
𝐴

attack scenario. Since this is a zero-sum game, the payoff for the
defender is negative of the attacker’s payoff, or .− 𝑈

𝐴

○ Sample output: first section shows the attack and defense scenarios, first
array shown is the payoff matrix, second matrix is the Nash equilibrium



for the system.

Pending Issues: After our advisor meetings we realized there is a lot of fine tuning
that needs to be done before our application is ready to be user tested. We did a good
job of finalizing the requirements of our application with our client this past week, but
we are going to make a presentation for our client running through all specific inputs
and outputs on the frontend and the backend to make sure we are not wasting time on
confused requirements.

Individual Contributions:

Team Member Contribution Weekly
Hours

Total Hours

Jon Greazel Worked on the inspector and engine
selector

6/6.5 31.5

Hayden Sellars Continue fixing the animation
triggers

6/6 30

Joe Strobel Added defense node and defense
node inspector

6/6 31

Harry Majerus Making changes to functionality and
output of the attack tree algorithm.
Research into and starting
implementation of attack-defense
tree processing.

6/7 32

Nicholas
Battani

More API work, ensuring
frontend/backend communication is
sending the correct data across.

6/6 30

Stefan Peng Worked on the game theory engine 6/6 30

Plans for the Upcoming 2 Weeks:
● Jon:



○ Continue to work on the analytical engine selector. I don’t have a lot of
experience with Angular so figuring out the best way to conditionally
render that many components will be my main challenge.

● Hayden:
○ Finalize animations for the front end graph and work on fine tuning the

inputs.
● Joe:

○ Check node input requirements now that we have them documented
from the client. Begin working on output visualization for the json
received from the backend.

● Harry:
○ Write attack-defense tree algorithm to client specifications and maybe

then to maximum investment efficiency if time allows.
● Nick:

○ Add ability to switch between engines from Frontend via the API. Ensure
that all engines are returning correct and readable values to the
frontend.

● Stefan:
○ Continue refining game theory engine and integrating with the front end
○ Help work on attack-defense tree engine

Summary of Weekly Advisor Meetings: The focus of our advisor meetings was mainly
on the correct implementation of back end engines. There are a few different
approaches with varying complexities so we discussed the best approach moving
forward. We also spent some time hammering out which input should belong to each
engine; that information will determine how the inspector looks per node per engine
and which parameters the back engine requires.


